Joubert syndrome and related disorders: a paradigm to understand the complexity of ciliopathies Enza Maria Valente CSS-Mendel Institute, Rome University of Salerno # The primary cilium membrane-enclosed antenna-like structure with a ring-shaped skeleton (9+0 doublets of mt), a basal body (triplets of mt) and a transition zone - up to 1000 proteins involved - mutationsidentified in over50 disease-genes - about 100 disorders may be driven by cilia abnormalities - minimal estimated collective incidence: 1/1000 conceptuses # A truly multitasking organelle Kidney and bile ducts epithelial cells Primary cilia are present on the surface of nearly all cell types, both pre- and post-natally In many tissues, primary cilia link mechanosensory, visual and osmotic stimuli to cell-cycle control and epithelial cell polarity. Retinal photoreceptors In the embryonic node (a transient structure during gastrulation), motile nodal cilia generate a leftward nodal flow that is essential for L-R axis determination. # Primary cilia play a key role during development Primary cilia control neural and limb patterning, by modulating: - Sonic Hedgehog pathway - Wnt / beta-catenin pathway - planar cell polarity pathway # **Common features of ciliopathies** - Disorders caused by genes encoding for proteins of the primary cilium and its apparatus (basal body, centrosome) - Variable severity and multiorgan involvement - Clinical and genetic overlap among distinct conditions | | | _ | | | | | | | | |------------------------------|-----|-----|------|------|------|------|-----|-----|-----| | | BBS | MKS | JBTS | NPHP | SLSN | OFD1 | CED | ATD | SRP | | Cystic kidneys | | | | | | | | | | | Hepatobiliary disease | | | | | | | | | | | Retinal degeneration | | | | | | | | | | | Laterality defects | | | | | | | | | | | Intellectual disability | | | | | | | | | | | Cerebellar vermis hypoplasia | | | | | | | | | | | Encephalocele | | | | | | | | | | | Polydactyly | | | | | | | | | | | Obesity | | | | | | | | | | | Shortening/bowing of bones | | | | | | | | | | | Ectodermal dysplasia | | | | | | | | | | # Ciliopathies: the concept of «splitting and lumping» **SPLITTING** same gene → distinct phenotypes **LUMPING** distinct genes → same phenotype # Joubert syndrome Reprinted with permission from Neurology, 1969;19:813-825. # Familial Agenesis of the Cerebellar Vermis: A Syndrome of Episodic Hyperpnea, Abnormal Eye Movements, Ataxia, and Retardation Marie Joubert, MD; Jean-Jacques Eisenring, MD; J. Preston Robb, MD; Frederick Andermann, MD - Autosomal recessive condition (three affected siblings) - Hypotonia and ataxia - Oculomotor apraxia, other eye movement anomalies - Developmental delay, mental retardation - Neonatal breathing abnormalities - Behavioural problems Molar Tooth Sign # Starting from the MTS: the expanding group of JSRD #### Joubert syndrome (JS) - neurological features, MTS - ± postaxial polydactily - ± encephalocele - ± posterior fossa cyst #### **COACH and Gentile syndromes** - neurological features, MTS - hepatic fibrosis - ± coloboma - ± renal disease #### Senior-Loken syndrome - Leber congenital amaurosis - nephronophthisis - ± neurological features, MTS #### **Dekaban-Arima syndrome (DAS)** - neurological features, MTS - Leber congenital amaurosis - cystic dysplastic kidneys - ± coloboma - ± postaxial polydactily #### Varadi-Papp syndrome (OFD VI) - neurological features, MTS - midline orofacial dysplasia - polydactyly, Y-shaped central metacarp - ± hypothalamic hamartoma - ± periventricular nodular heterotopia - ± congenital heart disease #### MALTA syndrome - neurological features, MTS - encephalocele - hydrocephalus - renal cystic disease - ± coloboma - ± retinal dystrophy #### JS + retinopathy - neurological features, MTS - Leber congenital amaurosis or other retinopathy - ± postaxial polydactily - ± encephalocele #### **Marsh syndrome** - neurological features, MTS - white matter cysts - renal cysts #### Al Gazali-Sztriha syndrome - neurological features, MTS - absent pituitary gland #### JB + polymicrogyria - neurological features, MTS - cortical polymicrogyria #### JS + nephronophthisis - neurological features, MTS - nephronophthisis # **Genetic heterogeneity in JSRD** | | locus | gene/protein | JSRD | MKS | NPH/SLS | |---------------------|-------|-----------------|--------|------|-------------| | 2011-2012 2004-2010 | 9q34 | INPP5E | JBTS1 | | | | | 11 | TMEM216 | JBTS2 | MKS2 | | | | 6q23 | AHI1/Jouberin | JBTS3 | | | | | 2q13 | Nephrocystin | JBTS4 | | NPHP1/SLSN1 | | | 12q21 | CEP290 | JBTS5 | MKS4 | NPHP6/SLSN6 | | | 8q24 | TMEM67/Meckelin | JBTS6 | MKS3 | NPHP11 | | | 16q | RPGRIP1L | JBTS7 | MKS5 | NPHP8 | | | 3q11 | ARL13B | JBTS8 | | | | | 4p15 | CC2D2A | JBTS9 | MKS6 | | | | Хр | CXORF5/OFD1 | JBTS10 | | | | | 2q24 | TTC21B | JBTS11 | MKS | | | | 15q26 | KIF7 | JBTS12 | | | | | 12q24 | TCTN1 | JBTS13 | | | | | 12q24 | TCTN2 | JBTS | MKS8 | | | | 2q33 | TMEM237 | JBTS14 | | | | | 7q32 | TSGA14/CEP41 | JBTS15 | MKS | | | | 11 | TMEM138 | JBTS16 | MKS | | | | 5p13 | C5ORF42 | JBTS17 | | | | | 10q24 | TCTN3/OFD4 | JBTS18 | | | | | 16q12 | ZNF423 | JBTS19 | | NPHP14 | | | 3q22 | NPHP3 | | MKS7 | NPHP3 | | | | | | | | the currently known genes are responsible for only ~50% cases all JSRD genes encode for proteins of the primary cilium # Overlap with other ciliopathies: Meckel syndrome - cystic dysplastic kidneys - occipital encephalocele, other posterior fossa abn - liver fibrosis (ductal plate malformation) - postaxial polydactyly - other: ocular/retinal abn, CHD, genital abn 9 genes shared with JSRD - in utero / early letalithy - autosomal recessive inheritance # **Isolated Nephronophthisis and Senior-Loken syndrome** Isolated juvenile NPH is the most common genetic cause of ESRF in childhood Asymptomatic in the first decade of life Symptoms at onset (late first decade): - polyuria, polydypsia - anemia, growth retardation - urinary concetration defect - acute renal failure!!!! Kidney ultrasound (variable): small kidneys, cortico-medullary hyper-echogenicity, isolated small cysts Kidney biopsy: thickening of the tubular basal membrane, interstitial fibrosis DDAVP test: deficit of urinary concentration ability after Desmopressin stimulation (positive from 3-4 years of age!!) 5 genes shared with JSRD # Overlap with other ciliopathies: Bardet-Biedl syndrome - obesity, hypogenitalism - retinal dystrophy - renal dysplasia (including cysts) - polydactyly - congenital heart defects - hepatic fibrosis - (cognitive impairment, ataxia, deafness, neural tube defects) 3 genes shared with JSRD, more with MKS ## Overlap with other ciliopathies: OFD1 syndrome OFD1 Is Mutated in X-Linked Joubert Syndrome and Interacts with *LCA5*-Encoded Lebercilin Karlien L.M. Coene,^{1,2,9} Ronald Roepman,^{1,2,9,*} Dan Doherty,⁴ Bushra Afroze,⁵ Hester Y. Kroes,⁶ Stef J.F. Letteboer,¹ Lock H. Ngu,⁵ Bartlomiej Budny,⁷ Frwin van Wijk,³ Nicholas T. Gorden,⁴ Malika Azhimi,¹ Christel Thauvin-Robinet,⁸ Joris A. Veltman,^{1,2} Mireille Boink,¹ Tjitske Kleefstra,¹ Frans P.M. Cremers,^{1,2} Hans van Bokhoven,^{1,2} and Arjan P.M. de Brouwer^{1,2} X-linked dominant, male lethality #### Facial and oral abnormalities - tongue anomalies, frenula - cleft palate/lip - abnormal teeth and hair - dysmorphic features #### Skeletal abnormalities • brachydactyly, polydactyly, other #### Other organs - cystic kidneys - CNS malformations #### Joubert patients: - MTS or CVA - PMG, hydrocephalus - retinitis pigmentosa - postaxial polydactyly - polycystic kidneys AJHG 2009 # Intrafamilial variability of ciliopathies # Co-Occurrence of Distinct Ciliopathy Diseases in Single Families Suggests Genetic Modifiers Maha S. Zaki, 1* Shifteh Sattar, 2 Rustin A. Massoudi, 2 and Joseph G. Gleeson 2 AJMG 2012 #### JSRD + MKS - •TMEM67 mut - •TMEM216 mut #### JSRD + ACLS •KIF7 mut mild CVA several genes cause distinct ciliopathies with variable clinical overlap not all genes have been tested for all phenotypes → further associations to come soon # How can we explain the splitting and lumping? # Lumping... # Ciliary proteins interact in complex, integrated networks Families of ciliary proteins with distinct functions may associate with specific phenotypes: - •BBS→BBSome - •Skeletal dysplasias → IFT complex - •NPH → NPH complex at the transition zone - •JSRD/MKS → Tectonic complex at the transition zone # ... and splitting # **Genotype-phenotype correlates** RPGRIP1L - TMEM67 - CC2D2A MKS1 NPHP3 2 truncating mutations MKS MKS at least 1 missense mutation **JSRD** MKS BBS NPH NPHP complex function #### **CEP290** wide phenotypic spectrum: LCA - NPH - SLS - JSRD - MKS founder hypomorphic mutation → isolated LCA; otherwise, no obvious correlation between mutation type and phenotype #### NPHP1 95% cases: same homozygous 250kb deletion encompassing the gene → variable phenotypes (NPH − SLS − JSRD) # Oligogenic inheritance and mutational load in ciliopathies # The oligogenic properties of Bardet–Biedl syndrome Nicholas Katsanis* Human Molecular Genetics, 2004, Vol. 13, Review Issue 1 DOI: 10.1093/hmg/ddh092 Advance Access published on February 19, 2004 #### Evidence of Oligogenic Inheritance in Nephronophthisis Julia Hoefele,*† Matthias T.F. Wolf,* John F. O'Toole,* Edgar A. Otto,* Ulla Schultheiss,* Georges Dêschenes,† Massimo Attanasio,* Boris Utsch,* Corinne Antignac,⁵ and Friedhelm Hildebrandt*|| JAm Soc Nephrol 18: 2789–2795, 2007. JASN Express. Published on April 4, 2007 as doi: 10.1681/ASN.2006101164 High NPHP1 and NPHP6 Mutation Rate in Patients with Joubert Syndrome and Nephronophthisis: Potential Epistatic Effect of NPHP6 and AHI1 Mutations in Patients with NPHP1 Mutations Kálmán Tory,*† Tiphanie Lacoste,*† Lydie Burglen,‡ Vincent Morinière,*† Nathalie Boddaert,§ Marie-Alice Macher, Brigitte Llanas, Hubert Nivet,** Albert Bensman,†† Patrick Niaudet†‡† Corinne Antignac,*†§§ Rémi Salomon,*†‡ and Sophie Saunier*† #### Erica E Davis^{1,2}, Qi Zhang³, Qin Liu³, Bill H Diplas¹, Lisa M Davey¹, Jane Hartley⁴, Corinne Stoetzel⁵, Katarzyna Szymanska⁶, Gokul Ramaswami⁷, Clare V Logan⁶, Donna M Muzny⁸, Alice C Young⁹, David A Wheeler⁸, Pedro Cruz⁹, Margaret Morgan⁸, Lora R Lewis⁸, Praveen Cherukuri⁹, Baishali Maskeri⁹, Nancy F Hansen⁹, James C Mullikin⁹, Robert W Blakesley⁹, Gerard G Bouffard⁹, NISC Comparative Sequencing Program⁹, Gabor Gyapay¹⁰, Susanne Rieger¹¹, Burkhard Tönshoff¹¹, Ilse Kern¹², Neveen A Soliman¹³, Thomas J Neuhausl¹⁴, Kathryn J Swoboda^{15,16}, Hulya Kayserili¹⁷, Tomas E Gallagher¹⁸, Richard A Lewis^{19–22}, Carsten Bergmann^{23,24}, Edgar A Otto⁷, Sophie Saunier²⁵, Peter J Scambler²⁶, Philip L Beales²⁶, Joseph G Gleeson²⁷, Eamonn R Maher⁴, Tania Attié-Bitach²⁸, Hélène Dollfus⁵, Colin A Johnson⁶, Eric D Green⁹, Richard A Gibbs⁸, Friedhelm Hildebrandt^{7,29}, Eric A Pierce³ & Nat Genet 2011 in several patients, only one heterozygous mutation is identified instead of the expected two (e.g. het TSGA14 mut + het mut in other genes in half mutated pts) #### TTC21B recessive mutations: - isolated NPH / NPH plus / JATD TTC21B heterozygous mutations: - -2.5% pts with ciliopathies (some mutated in other genes) vs 0.06% controls ## ... and common variants acting as genetic modifiers # A common allele in *RPGRIP1L* is a modifier of retinal degeneration in ciliopathies Hemant Khanna^{1,22}, Erica E Davis^{2,22}, Carlos A Murga-Zamalloa¹, Alejandro Estrada-Cuzcano¹, Irma Lopez³, Anneke I den Hollander⁴, Marijke N Zonneveld⁴, Mohammad I Othman¹, Naushin Waseem⁵, Christina F Chakarova⁵, Cecilia Maubaret⁵, Anna Diaz-Font⁶, Ian MacDonald⁷, Donna M Muzny⁸, David A Wheeler⁸, Margaret Morgan⁸, Lora R Lewis⁸, Clare V Logan⁹, Perciliz L Tan², Michael A Beer^{2,10}, Chris F Inglehearn⁹, Richard A Lewis^{11–14}, Samuel G Jacobson¹⁵, Carsten Bergmann¹⁶, Philip L Beales⁶, Tania Attié-Bitach¹⁷, Colin A Johnson⁹, Edgar A Otto¹⁸, Shomi S Bhattacharya⁵, Friedhelm Hildebrandt^{18,19}, Richard A Gibbs⁸, Robert K Koenekoop³, Anand Swaroop^{1,18,20} & Nicholas Katsanis^{2,21} Nat Genet 2009 #### RPGRIP1L p.A229T - controls: 2.8% - ciliop. non RP: 0% - ciliop + RP: 4.5% (p<0.001) # AHI1 is required for photoreceptor outer segment development and is a modifier for retinal degeneration in nephronophthisis Nat Genet 2010 Carrie M Louie¹, Gianluca Caridi², Vanda S Lopes^{3,4}, Francesco Brancati^{5,6}, Andreas Kispert⁷, Madeline A Lancaster¹, Andrew M Schlossman¹, Edgar A Otto^{8,9}, Michael Leitges¹⁰, Hermann-Josef Gröne¹¹, Irma Lopez¹², Harini V Gudiseva¹³, John F O'Toole^{8,9}, Elena Vallespin¹⁴, Radha Ayyagari¹³, Carmen Ayuso¹⁴, Frans P M Cremers¹⁵, Anneke I den Hollander¹⁶, Robert K Koenekoop¹², Bruno Dallapiccola¹⁷, Gian Marco Ghiggeri², Friedhelm Hildebrandt^{8,9}, Enza Maria Valente^{5,18}, David S Williams^{3,4} & Joseph G Gleeson¹ #### **AHI1 p.R830W** - controls: 2.8% - isolated NPH: 1.8% - SLS: 25% (p<0.001) - other ciliopathies: ns