

Joubert syndrome and related disorders: a paradigm to understand the complexity of ciliopathies

Enza Maria Valente
CSS-Mendel Institute, Rome
University of Salerno

The primary cilium

membrane-enclosed antenna-like structure with a ring-shaped skeleton (9+0 doublets of mt), a basal body (triplets of mt) and a transition zone

- up to 1000 proteins involved
- mutationsidentified in over50 disease-genes
- about 100
 disorders may be
 driven by cilia
 abnormalities
- minimal estimated collective incidence: 1/1000 conceptuses

A truly multitasking organelle

Kidney and bile ducts epithelial cells

Primary cilia are present on the surface of nearly all cell types, both pre- and post-natally

In many tissues, primary cilia link mechanosensory, visual and osmotic stimuli to cell-cycle control and epithelial cell polarity.

Retinal photoreceptors

In the embryonic node (a transient structure during gastrulation), motile nodal cilia generate a leftward nodal flow that is essential for L-R axis determination.

Primary cilia play a key role during development

Primary cilia control neural and limb patterning, by modulating:

- Sonic Hedgehog pathway
- Wnt / beta-catenin pathway
- planar cell polarity pathway

Common features of ciliopathies

- Disorders caused by genes encoding for proteins of the primary cilium and its apparatus (basal body, centrosome)
- Variable severity and multiorgan involvement
- Clinical and genetic overlap among distinct conditions

		_							
	BBS	MKS	JBTS	NPHP	SLSN	OFD1	CED	ATD	SRP
Cystic kidneys									
Hepatobiliary disease									
Retinal degeneration									
Laterality defects									
Intellectual disability									
Cerebellar vermis hypoplasia									
Encephalocele									
Polydactyly									
Obesity									
Shortening/bowing of bones									
Ectodermal dysplasia									

Ciliopathies: the concept of «splitting and lumping»

SPLITTING

same gene → distinct phenotypes

LUMPING

distinct genes → same phenotype

Joubert syndrome

Reprinted with permission from Neurology, 1969;19:813-825.

Familial Agenesis of the Cerebellar Vermis: A Syndrome of Episodic Hyperpnea, Abnormal Eye Movements, Ataxia, and Retardation

Marie Joubert, MD; Jean-Jacques Eisenring, MD; J. Preston Robb, MD; Frederick Andermann, MD

- Autosomal recessive condition (three affected siblings)
- Hypotonia and ataxia
- Oculomotor apraxia, other eye movement anomalies
- Developmental delay, mental retardation
- Neonatal breathing abnormalities
- Behavioural problems

Molar Tooth Sign

Starting from the MTS: the expanding group of JSRD

Joubert syndrome (JS)

- neurological features, MTS
- ± postaxial polydactily
- ± encephalocele
- ± posterior fossa cyst

COACH and Gentile syndromes

- neurological features, MTS
- hepatic fibrosis
- ± coloboma
- ± renal disease

Senior-Loken syndrome

- Leber congenital amaurosis
- nephronophthisis
- ± neurological features, MTS

Dekaban-Arima syndrome (DAS)

- neurological features, MTS
- Leber congenital amaurosis
- cystic dysplastic kidneys
- ± coloboma
- ± postaxial polydactily

Varadi-Papp syndrome (OFD VI)

- neurological features, MTS
- midline orofacial dysplasia
- polydactyly, Y-shaped central metacarp
- ± hypothalamic hamartoma
- ± periventricular nodular heterotopia
- ± congenital heart disease

MALTA syndrome

- neurological features, MTS
- encephalocele
- hydrocephalus
- renal cystic disease
- ± coloboma
- ± retinal dystrophy

JS + retinopathy

- neurological features, MTS
- Leber congenital amaurosis or other retinopathy
- ± postaxial polydactily
- ± encephalocele

Marsh syndrome

- neurological features, MTS
- white matter cysts
- renal cysts

Al Gazali-Sztriha syndrome

- neurological features, MTS
- absent pituitary gland

JB + polymicrogyria

- neurological features, MTS
- cortical polymicrogyria

JS + nephronophthisis

- neurological features, MTS
- nephronophthisis

Genetic heterogeneity in JSRD

	locus	gene/protein	JSRD	MKS	NPH/SLS
2011-2012 2004-2010	9q34	INPP5E	JBTS1		
	11	TMEM216	JBTS2	MKS2	
	6q23	AHI1/Jouberin	JBTS3		
	2q13	Nephrocystin	JBTS4		NPHP1/SLSN1
	12q21	CEP290	JBTS5	MKS4	NPHP6/SLSN6
	8q24	TMEM67/Meckelin	JBTS6	MKS3	NPHP11
	16q	RPGRIP1L	JBTS7	MKS5	NPHP8
	3q11	ARL13B	JBTS8		
	4p15	CC2D2A	JBTS9	MKS6	
	Хр	CXORF5/OFD1	JBTS10		
	2q24	TTC21B	JBTS11	MKS	
	15q26	KIF7	JBTS12		
	12q24	TCTN1	JBTS13		
	12q24	TCTN2	JBTS	MKS8	
	2q33	TMEM237	JBTS14		
	7q32	TSGA14/CEP41	JBTS15	MKS	
	11	TMEM138	JBTS16	MKS	
	5p13	C5ORF42	JBTS17		
	10q24	TCTN3/OFD4	JBTS18		
	16q12	ZNF423	JBTS19		NPHP14
	3q22	NPHP3		MKS7	NPHP3

the currently known genes are responsible for only ~50% cases

all JSRD genes encode for proteins of the primary cilium

Overlap with other ciliopathies: Meckel syndrome

- cystic dysplastic kidneys
- occipital encephalocele, other posterior fossa abn
- liver fibrosis (ductal plate malformation)
- postaxial polydactyly
- other: ocular/retinal abn, CHD, genital abn

9 genes shared with JSRD

- in utero / early letalithy
- autosomal recessive inheritance

Isolated Nephronophthisis and Senior-Loken syndrome

Isolated juvenile NPH is the most common genetic cause of ESRF in childhood

Asymptomatic in the first decade of life

Symptoms at onset (late first decade):

- polyuria, polydypsia
- anemia, growth retardation
- urinary concetration defect
- acute renal failure!!!!

Kidney ultrasound (variable): small kidneys, cortico-medullary hyper-echogenicity, isolated small cysts

Kidney biopsy: thickening of the tubular basal membrane, interstitial fibrosis

DDAVP test: deficit of urinary concentration ability after Desmopressin stimulation (positive from 3-4 years of age!!)

5 genes shared with JSRD

Overlap with other ciliopathies: Bardet-Biedl syndrome

- obesity, hypogenitalism
- retinal dystrophy
- renal dysplasia (including cysts)
- polydactyly
- congenital heart defects
- hepatic fibrosis
- (cognitive impairment, ataxia, deafness, neural tube defects)

3 genes shared with JSRD, more with MKS

Overlap with other ciliopathies: OFD1 syndrome

OFD1 Is Mutated in X-Linked Joubert Syndrome and Interacts with *LCA5*-Encoded Lebercilin

Karlien L.M. Coene,^{1,2,9} Ronald Roepman,^{1,2,9,*} Dan Doherty,⁴ Bushra Afroze,⁵ Hester Y. Kroes,⁶ Stef J.F. Letteboer,¹ Lock H. Ngu,⁵ Bartlomiej Budny,⁷ Frwin van Wijk,³ Nicholas T. Gorden,⁴ Malika Azhimi,¹ Christel Thauvin-Robinet,⁸ Joris A. Veltman,^{1,2} Mireille Boink,¹ Tjitske Kleefstra,¹ Frans P.M. Cremers,^{1,2} Hans van Bokhoven,^{1,2} and Arjan P.M. de Brouwer^{1,2}

X-linked dominant, male lethality

Facial and oral abnormalities

- tongue anomalies, frenula
- cleft palate/lip
- abnormal teeth and hair
- dysmorphic features

Skeletal abnormalities

• brachydactyly, polydactyly, other

Other organs

- cystic kidneys
- CNS malformations

Joubert patients:

- MTS or CVA
- PMG, hydrocephalus
- retinitis pigmentosa
- postaxial polydactyly
- polycystic kidneys

AJHG 2009

Intrafamilial variability of ciliopathies

Co-Occurrence of Distinct Ciliopathy Diseases in Single Families Suggests Genetic Modifiers

Maha S. Zaki, 1* Shifteh Sattar, 2 Rustin A. Massoudi, 2 and Joseph G. Gleeson 2

AJMG 2012

JSRD + MKS

- •TMEM67 mut
- •TMEM216 mut

JSRD + ACLS

•KIF7 mut

mild CVA

several genes cause distinct ciliopathies with variable clinical overlap

not all genes have been tested for all phenotypes

→ further associations to come soon

How can we explain the splitting and lumping?

Lumping...

Ciliary proteins interact in complex, integrated networks

Families of ciliary proteins with distinct functions may associate with specific phenotypes:

- •BBS→BBSome
- •Skeletal dysplasias → IFT complex
- •NPH → NPH complex at the transition zone
- •JSRD/MKS → Tectonic complex at the transition zone

... and splitting

Genotype-phenotype correlates

RPGRIP1L - TMEM67 - CC2D2A

MKS1

NPHP3

2 truncating mutations

MKS

MKS

at least 1 missense mutation

JSRD

MKS

BBS

NPH

NPHP complex function

CEP290

wide phenotypic spectrum:

LCA - NPH - SLS - JSRD - MKS

founder hypomorphic mutation → isolated LCA; otherwise, no obvious correlation between mutation type and phenotype

NPHP1

95% cases: same homozygous 250kb deletion encompassing the gene → variable phenotypes (NPH − SLS − JSRD)

Oligogenic inheritance and mutational load in ciliopathies

The oligogenic properties of Bardet–Biedl syndrome

Nicholas Katsanis*

Human Molecular Genetics, 2004, Vol. 13, Review Issue 1 DOI: 10.1093/hmg/ddh092 Advance Access published on February 19, 2004

Evidence of Oligogenic Inheritance in Nephronophthisis

Julia Hoefele,*† Matthias T.F. Wolf,* John F. O'Toole,* Edgar A. Otto,* Ulla Schultheiss,* Georges Dêschenes,† Massimo Attanasio,* Boris Utsch,* Corinne Antignac,⁵ and Friedhelm Hildebrandt*||

JAm Soc Nephrol 18: 2789–2795, 2007.

JASN Express. Published on April 4, 2007 as doi: 10.1681/ASN.2006101164

High NPHP1 and NPHP6 Mutation Rate in Patients with Joubert Syndrome and Nephronophthisis: Potential Epistatic Effect of NPHP6 and AHI1 Mutations in Patients with NPHP1 Mutations

Kálmán Tory,*† Tiphanie Lacoste,*† Lydie Burglen,‡ Vincent Morinière,*† Nathalie Boddaert,§ Marie-Alice Macher, Brigitte Llanas, Hubert Nivet,** Albert Bensman,†† Patrick Niaudet†‡† Corinne Antignac,*†§§ Rémi Salomon,*†‡ and Sophie Saunier*†

Erica E Davis^{1,2}, Qi Zhang³, Qin Liu³, Bill H Diplas¹, Lisa M Davey¹, Jane Hartley⁴, Corinne Stoetzel⁵, Katarzyna Szymanska⁶, Gokul Ramaswami⁷, Clare V Logan⁶, Donna M Muzny⁸, Alice C Young⁹, David A Wheeler⁸, Pedro Cruz⁹, Margaret Morgan⁸, Lora R Lewis⁸, Praveen Cherukuri⁹, Baishali Maskeri⁹, Nancy F Hansen⁹, James C Mullikin⁹, Robert W Blakesley⁹, Gerard G Bouffard⁹, NISC Comparative Sequencing Program⁹, Gabor Gyapay¹⁰, Susanne Rieger¹¹, Burkhard Tönshoff¹¹, Ilse Kern¹², Neveen A Soliman¹³, Thomas J Neuhausl¹⁴, Kathryn J Swoboda^{15,16}, Hulya Kayserili¹⁷, Tomas E Gallagher¹⁸, Richard A Lewis^{19–22}, Carsten Bergmann^{23,24}, Edgar A Otto⁷, Sophie Saunier²⁵, Peter J Scambler²⁶, Philip L Beales²⁶, Joseph G Gleeson²⁷, Eamonn R Maher⁴, Tania Attié-Bitach²⁸, Hélène Dollfus⁵, Colin A Johnson⁶, Eric D Green⁹, Richard A Gibbs⁸, Friedhelm Hildebrandt^{7,29}, Eric A Pierce³ & Nat Genet 2011

in several patients, only one heterozygous mutation is identified instead of the expected two

(e.g. het TSGA14 mut + het mut in other genes in half mutated pts)

TTC21B recessive mutations:

- isolated NPH / NPH plus / JATD TTC21B heterozygous mutations:
- -2.5% pts with ciliopathies (some mutated in other genes) vs 0.06% controls

... and common variants acting as genetic modifiers

A common allele in *RPGRIP1L* is a modifier of retinal degeneration in ciliopathies

Hemant Khanna^{1,22}, Erica E Davis^{2,22}, Carlos A Murga-Zamalloa¹, Alejandro Estrada-Cuzcano¹, Irma Lopez³, Anneke I den Hollander⁴, Marijke N Zonneveld⁴, Mohammad I Othman¹, Naushin Waseem⁵, Christina F Chakarova⁵, Cecilia Maubaret⁵, Anna Diaz-Font⁶, Ian MacDonald⁷, Donna M Muzny⁸, David A Wheeler⁸, Margaret Morgan⁸, Lora R Lewis⁸, Clare V Logan⁹, Perciliz L Tan², Michael A Beer^{2,10}, Chris F Inglehearn⁹, Richard A Lewis^{11–14}, Samuel G Jacobson¹⁵, Carsten Bergmann¹⁶, Philip L Beales⁶, Tania Attié-Bitach¹⁷, Colin A Johnson⁹, Edgar A Otto¹⁸, Shomi S Bhattacharya⁵, Friedhelm Hildebrandt^{18,19}, Richard A Gibbs⁸, Robert K Koenekoop³, Anand Swaroop^{1,18,20} & Nicholas Katsanis^{2,21}

Nat Genet 2009

RPGRIP1L p.A229T

- controls: 2.8%

- ciliop. non RP: 0%

- ciliop + RP: 4.5% (p<0.001)

AHI1 is required for photoreceptor outer segment development and is a modifier for retinal degeneration in nephronophthisis

Nat Genet 2010

Carrie M Louie¹, Gianluca Caridi², Vanda S Lopes^{3,4}, Francesco Brancati^{5,6}, Andreas Kispert⁷, Madeline A Lancaster¹, Andrew M Schlossman¹, Edgar A Otto^{8,9}, Michael Leitges¹⁰, Hermann-Josef Gröne¹¹, Irma Lopez¹², Harini V Gudiseva¹³, John F O'Toole^{8,9}, Elena Vallespin¹⁴, Radha Ayyagari¹³, Carmen Ayuso¹⁴, Frans P M Cremers¹⁵, Anneke I den Hollander¹⁶, Robert K Koenekoop¹², Bruno Dallapiccola¹⁷, Gian Marco Ghiggeri², Friedhelm Hildebrandt^{8,9}, Enza Maria Valente^{5,18}, David S Williams^{3,4} & Joseph G Gleeson¹

AHI1 p.R830W

- controls: 2.8%

- isolated NPH: 1.8%

- SLS: 25% (p<0.001)

- other ciliopathies: ns

