

FATTORI CONDIZIONANTI E PREDITTIVI DELLA SOPRAVVIVENZA DEL RENE TRAPIANTATO

Le infezioni virali intra ed extra renali

Fabrizio Ginevri

Nefrologia, Fondazione Malattie Renali del Bambino Istituto G. Gaslini, Genova

28° Congresso Nazionale
della SOCIETÀ ITALIANA di NEFROLOGIA PEDIATRICA

24-26 Ottobre 2012

Hospitalization causes after kidney Tx (1987-2000)

Dharnidharka et al. Am J Transplant 2004

Viral infections after kidney transplantation: clinical effects

Viral infections after KTx

- Herpesviruses:
 - EBV
 - CMV
 - HHV8
 - HHV6-7
 - VZV
- Polyomaviruses
 - BKV
 - JCV
- Hepatitis viruses
 - HBV
 - HCV
- HIV, HTLV

- Adenovirus
- Parvovirus B19
- RSV
- Bocavirus
- Rotavirus
- West-Nile virus
- LCMV
- Coronavirus
- Parainfluenzavirus
- Mumps/Measles

Direct and indirect effects of virus replication

No.	Adenovirus	Polyomavirus BK and JC	Cytomegalovirus	Human Herpesvirus-6 and -7	Parvovirus B19
Direct	Nephritis	PyVAN	Colitis	Encephalitis	Anemia
	Cystitis	Cystitis	Hepatitis	Hepatitis	Enteritis
	Hepatitis	Ureter stenosis	Pneumonitis	Pneumonitis	Nephritis
		PML	Nephritis	Colitis?	Collapsing
27			Retinitis	- A-12	glomerulopathy
Indirect	Bronchiolitis obliterans	Acute rejection?	Graft rejection	Graft rejection	Glumerulonephritis
		您	Coinfection	Coinfection	Chronic allograft
			Allograft nephropathy	Allograft nephropathy?	nephropathy
			Cardiac allograft vasculopathy		Acute rejection?
			Vanishing bile duct syndrome		
			Bronchiolitis obliterans		
			Posttransplant		
			lymphoproliferative disorder		
			Chorioretinitis uveitis		

BKV infection after KTx: PyVAN

- Incidence rate 5% after kidney transplantation (range 1-10%)
 - ✓ Graft loss in ~50% (range 10% 90%)
- No effective antiviral drug
- Treatment by reducing immunosuppression:
 - ✓ 35-50% of PyVAN treated with any protocol → marked graft dysfunction, with possible progression to graft loss;

BKV infection after KTx: PyVAN

Extent and pathology of PyVAN correlate with graft loss

Graft function	Risk of false negative on biopsy	BK-PyVAN pathology / stage	Risk of graft loss
Mostly baseline Mostly impaired Significantly impaired / progressive failure	~30%	A B C	<15% 50% >80%

Drachenberg CB et al. Am J Transplant 2004 Hirsch HH et al. Am J Transplant 2009;9(Suppl 4)

BKV screening: available options

Screening

Diagnosis

Intervention

- Viruria:
 - cytology: decoy cells
 - qPCR for urine DNA
 - VP1 mRNA load
- Viraemia:
 - qPCR for plasma DNA
- Biopsy:
 - viral inclusions
 - staining for viral antigens
 - qPCR

- Possible BK-PyVAN
- Presumptive BK-PyVAN
- Definitive BK-PyVAN

BKV screening: intervention indicators

	Possible BK-PyVAN	Presumptive BK-PyVAN	Definitive BK-PyVAN					
Indicator	Viruria	Viruria + viraemia	Viruria, viraemia + BK-PyVAN					
Screening test	+	+	+					
Adjunct test	-	+	+					
Biopsy	-	-	+					
Intervention	No	Consider	Yes					

Italian pediatric clinical experience: prospective screening and treatment of presumptive PyVAN

- Further screening in case of positive viraemia
 - Augment frequency of screening to assess sustained replication
 - 2–4 week screening until viral clearance
- Screening after therapeutic intervention
 - To assess response to treatment
 - 2–4 week screening until viral clearance

Italian pediatric clinical experience: prospective screening and treatment of presumptive PyVAN

- 62 pediatric KTx recipients referred between 01/02 and 08/05:
 - BKV infection monitoring
 - BKV immunity monitoring

Treatment of presumptive PyVAN: IS reduction

	Brennan et al	Ginevri et al	Saad et al
	(n=200)	(n=62)	(n=24)
Patients with viraemia Number (%) Type	23 (11.5) Adult	13 (20.9) Paediatric	24 (100) Adult
Intervention	Step 1: Discontinue AZA or MMF Step 2. Reduce CNI	Step 1: Reduce CNI Step 2: Reduce or discontinue MMF	Reduce CNI and MMF
Outcome at 1 year Clearance of viraemia Mean (range) time to clearance BK-PyVAN incidence Acute rejection, n (%)	95% (22/23) patients	100%	100%
	54 days (7–213)	2 months (1–8)	5.8 months (1–9.5)
	No losses	No losses	1 BKV-related loss
	1 (4.3)	0	3 (13%)

Brennan DC et al. Am J Transplant 2005;5:582–94; Ginevri F et al. Am J Transplant 2007;7:2727–35; Saad ER et al. Transplantation 2008;85:850–54

Italian pediatric clinical experience:

short term outcome

- Historical cohort: 100 patients evaluated retrospectively
 - 5/100 found viremic, 3 patient presented with concomitant BK-PyVAN
 - median sCr at onset 168 mmol/L
 - At follow-up:
 - 1 graft loss
 - the other 4 patients cleared viremia after therapeutic reduction: median sCr at f-up 141 mmol/L
- Screened cohort: 62 patients
 - No patient developed BK-PyVAN
 - 13/62 patients developed viremia
 - median sCr at onset 106 mmol/L
 - At follow-up, all patients cleared viremia
 - 7 patients cleared after protocol reduction of IS, 6 after therapeutic reduction
 - no episode of rejection observed
 - median sCr at f-up 80 mmol/L

Monitoring of specific immunity in patients with BK viremia

Modulation of IS reduction according to cellular immunity analysis

Preemptive IS reduction: long term outcome in the US cohort

- Patient survival
 - worse overall patient survival in recipients who experienced sustained BK viremia (72% vs 91% in patients without sustained viremia)
 - graft survival at 5 yrs in the BKV sustained viremia group 73% vs 83% in pts without viremia

Hardinger et al. Am J Transpl 2010

Intrarenal viral infections

		Follow-up				
Finding	Baseline (n = 57)	6 months (n = 69)	12 months (n = 64)	24 months (n = 45)		
Viral genome detection in allograft						
Any virus	46	65	69	73		
Coinfection	19	26	21	27		
HCMV	0	3	0	0		
EBV	0	11	12	20		
HHV-6	25	25	22	23		
HHV-7	2	5	3	5		
HHV-8	0	2	2	2		
HSV-1	0	0	0	0		
HSV-2	0	0	0	0		
V7V	0	0	0	0		
BKV	5	17	24	20		
JCV	0	2	2	2		
B19	35	31	33	32		

Impact of viral infections on KTx

Impact of parvovirus B19 on KTx

Viral infections after KTx: CMV

- CMV infection: the most common viral infection after SOT
 - CMV-disease: tissue-invasive (GI, lung) plus indirect effects (graft dysfunction)
 - Antiviral drugs: available and effective

Impact of CMV infection on KTx:

acute rejection

Impact of CMV infection on KTx:

long term outcome

Treatment choice for CMV infection after KTx:

preemptive therapy vs prophylaxis

	Preemp	tive	Prophyl	actic		Risk Ratio		F	lisk Rati	0	
Study or Subgroup	Events	Events Total		Events Total		Weight M-H, Random, 95% (M-H, Rando		m, 95% CI	
Jung C 2001	27	36	14	34	17.7%	1.82 [1.17, 2.84	1		-		
Khoury JA 2006	29	49	14	49	16.2%	2.07 [1.26, 3.42	Ĕ			-	
Kliem V 2008	33	65	13	73	15.0%	2.85 [1.65, 4.93]	Ī		-	—	
Qiu Jiang 2008	14	30	13	30	14.7%	1.08 [0.62, 1.89]	l		-		
Queiroga M 2003	19	25	0	9	1,3%	15.00 [1.00, 225.60]	1			-	
Reischig T 2008	33	36	19	34	21.3%	1.64 [1.20, 2.25]	I		-68-		
Tian Xiaohui 2005	13	40	15	40	13.8%	0.87 [0.48, 1.58]	I		-		
Total (95% CI)		281		269	100.0%	1.67 [1.21, 2.30]	E		•		
Total events	168		88								
Heterogeneity: Tau ² =	0.10; Chi ²	= 14.60	3, df = 6 (F	= 0.02); $I^2 = 59\%$		+		+	1	+
Test for overall effect:	Z = 3.14 (i	P = 0.00	02)				0.005 Favour	0.1 s Preemptiv	re Fa	10 vours Prop	200 hylaxis

Treatment choice for CMV infection after KTx:

CMV disease after prophylaxis discontinuation

D+/R- patients are, in the majority of cases, managed with a prophylactic therapeutic strategy, due to the risk profile

High incidence of late onset CMV disease in D+/R- KTx recipients, after discontinuation of antiviral prophylaxis

Khoury *et al.* Am J Transplant 2006 Paya *et al.* Transplantation 2004

Viral infections after KTx: EBV

- EBV-related disease: PTLD
 - incidence rate of 1-3% after kidney transplantation
 - severe condition: reduced survival of host and graft

Events: 19

PTLD progression				
Relapse after CR	3			
Graft loss	5			
Infections	3			

Viral infections after KTx: EBV

• Effect of EBV on long term outcome: ? Limited evidence to date

Viral infections after KTx: EBV

(Val-)Ganciclovir reduces EBV primary infection

Viral infections after KTx: conclusions

- Viral infections have emerged as important modifiers of graft function and survival after transplant.
- While the role of CMV, BKV and ADV in acute and chronic injury is clearly recognized, other suspects such as EBV,HHV-6 and PBV19 require further studies.
- Antiviral prophylaxis and screening and intervention algorithms have been found valuable for CMV and BKV
 - similar approaches are largely lacking for EBV,ADV, HHV-6, and PVB19, as the significance of viral DNA detection and pathology is less well understood
- Future studies are needed to address these open issues.